

available at www.sciencedirect.com

Review

Chemotherapeutic adjuvant treatment for osteosarcoma: Where do we stand?

Jakob K. Anninga ^a, Hans Gelderblom ^{b,*}, Marta Fiocco ^c, Judith R. Kroep ^b, Antoni H.M. Taminiau ^d, Pancras C.W. Hogendoorn ^e, R. Maarten Egeler ^a

- ^a Department of Paediatric Oncology, Leiden University Medical Center, Leiden, The Netherlands
- ^b Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
- ^c Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
- ^d Department of Orthopaedic Surgery, Leiden University Medical Center, Leiden, The Netherlands
- ^e Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands

ARTICLEINFO

Article history:

Available online 22 June 2011

Keywords:

Bone neoplasm

Bone

Osteosarcoma

Chemotherapy

Review

Adriamycin

Cisplatin

Ifosfamide

Methotrexate

Pathological response

ABSTRACT

Aim: Since the introduction of chemotherapy, survival in localised high-grade osteosar-coma has improved considerably. However, there is still no worldwide consensus on a standard chemotherapy approach. In this systematic review evidence for effectiveness of each single drug and the role of response guided salvage treatment of adjuvant chemotherapy are addressed, whereas in a meta-analysis the number of drugs in current protocols is considered.

Methods: A systematic literature search for clinical studies in localised high-grade osteosar-coma was undertaken, including both randomised and non-randomised trials. Historical clinical studies from the pre-chemotherapy era were included for comparison purposes. Results: Nine historical studies showed a long-term survival of 16% after only local treatment. Fifty single agent phase II studies showed high response rates for adriamycin (A, 43%), ifosfamide (Ifo, 33%), methotrexate (M, 32%), cisplatin (P, 26%) but only 4% for etposide (E). In 19 neo-adjuvant studies the mean 5-year event free survival (EFS) was 48% for 2-drug regimens and 58% for $\geqslant 3$ drug regimens, with a 5-year overall survival (OAS) of 62% and 70%, respectively. Meta-analysis showed that $\geqslant 3$ drug regimens including methotrexate plus adriamycin plus cisplatin (plus ifosfamide) (MAP(Ifo)) had significant better outcome (EFS: HR = 0.701 (95% confidence interval [95% CI]: 0.615–0.799); OAS: HR = 0.792 (95% CII)

Abbreviations: A, adriamycin, doxorubicin; M, methotrexate; Ifo, ifosfamide; P, cisplatin; E, etoposide; MAP(Ifo), methotrexate plus adriamycin plus cisplatin (plus ifosfamide); BCD, bleomycin, cyclofosfamide and actinomycin-D; MTP, liposomal muramyl tripeptide fosfatidylethanolamine or mifamurtide; OSS, high-grade osteosarcoma; CR, complete remission; PR, partial remission; RR, response rate (CR + PR); COSS, Cooperative Osteosarcoma Studygroup; IOR, Istituto Ortopedico Rizzoli; IOR/OS, Istituto Ortopedico Rizzoli Osteosarcoma Study; SSG, Scandinavian Sarcoma Group; EOI, European Osteosarcoma Intergroup; FU, follow-up; OAS, overall survival; EFS, event free survival; pGR, pathologic good response; pPR, pathologic poor respon.

^{*} Corresponding author: Address: Chairman European Osteosarcoma Intergroup, Department of Clinical Oncology, Int. Post K1-P, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.

0.677–0.926) than 2-drug regimens, but there was no significant difference between MAP and MAPIfo (or plus etoposide). Salvage of poor responders by changing drugs, or intensifying treatment postoperatively has not proven to be useful in this analysis.

Conclusion: Meta-analysis in patients with localised high-grade osteosarcoma shows that 3-drug regimens, for example MAP are the most efficacious drug regimens.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

High-grade osteosarcoma (OSS) is the most frequent primary malignant bone tumour¹ and occurs predominantly during puberty with a second peak in the elderly.²⁻⁴ The annual incidence rate is on average 4.4 per 10⁶ people aged 0-24 years, 1.7 per 10⁶ people aged 25-59 years and 4.2 per 10⁶ in people ≥60 years. OSS typically is a tumour of the extremities: 78% is localised in the lower extremity, with 64% around the knee and 10% localised in the humerus. 5-10 Long term survival in localised OSS has increased substantially from 10-20% when surgery as single treatment was given before the 1980's up to 50-60% from 1985 onwards. However, since then no substantial further improvement of survival is observed^{4,11–16} (Fig. 1). Children have a 5-10% better survival rate than patients up to 50 years, while patients older than 60 years have a survival rate of only 24%. 4-16 The improvement in survival has been attributed to the use of intensive multi-agent chemotherapy given in combination with advanced surgery. In modern treatment schedules, usually a combination of doxorubicine (adriamycin (A)) and cisplatin (P), with or without high-dose methotrexate (M) and/or ifosfamide (Ifo) and/or etoposide (E) are being used.

Our aim is to address several questions. What is the evidence for the effectiveness of each of these drugs as single agent? How many drugs should at least be given to accomplish the most effective treatment regimen? What is the value of increased dose intensity or salvage treatment after a poor pathological response on preoperative chemotherapy?

Due to the presence of heterogeneous studies including the design, regimen, follow-up or definitions of histological response, a random effects meta-analysis was employed on a number of selected studies.¹⁷ The ultimate goal of the analysis was to define the most efficacious treatment in localised OSS.

2. Materials and methods

2.1. Literature search strategy

To assess the efficacy of the different chemotherapy regimens a Pubmed and EMBASE search was performed in January 2010, with osteosarcoma, osteogenic sarcoma, bone sarcoma and the drug names methotrexate, doxorubicin, adriamycin, cisplatin, ifosfamide and etoposide as search terms. Only papers in the English language were accepted for this review. Letters, abstracts or review papers were not included for reason of incomplete data of the studies or follow-up or duplication (Fig. 2). If reports were published more than once on the same patient population, the most mature data were used.

Phase II studies on the aforementioned 5 drugs were included. For the historical pre-chemotherapy era studies additional studies were retrieved from the references. Only studies with an appropriate definition of OSS and non-metastatic stage were used. Phase III studies of patients with localised disease only, were selected to have included at least 50 patients and with at least 5 years of follow-up. For the included studies, the following data were collected: study period, patient number and characteristics, chemotherapeutic regimens (drugs, dose, frequency) as well as type of surgery, histological response, duration of follow-up (FU), event free (EFS) and overall survival (OAS).

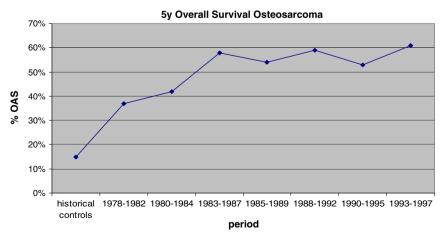


Fig. 1 – Reported 5y-overall survival (% OAS) during subsequent periods. Data from Magnani (n=3502).¹⁴ and Stiller (n = 1324).¹⁵ Overall survival since 1970, when chemotherapy was introduced in addition to surgery (historical controls). This curve demonstrates clearly that OAS reaches a plateau phase from 1985 onwards.

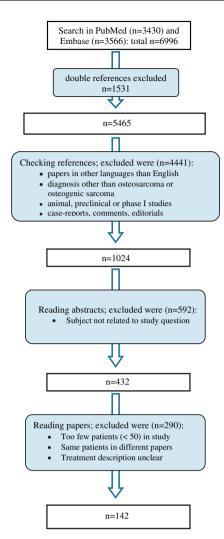


Fig. 2 - Search strategy for papers in this review.

2.2. Definition of results and outcome

Histological response was defined according to the proportion of viable tumour cells after induction chemotherapy: good pathological response (pGR) was defined if <10% is viable and poor pathological response (pPR) if \geqslant 10% of the tumour cells is viable. Response rate, event free survival (EFS) and overall survival (OAS) were taken from the original publications. In phase II studies, a drug was considered effective when the response rate was \geqslant 20%.

2.3. Statistical analysis: meta-analysis

The meta-analysis performed here is based on a new methodology for pairs of survival curves under heterogeneity and cannot be casted in the classical meta-analysis where the well-known forest plot is used to illustrate the results of the meta-analysis. A multivariate random-effects model for a joint analysis of survival proportions reported at different times in the different studies has been used in this manuscript in order to be able to use all information available in each paper included in the meta-analysis. For each study included in the meta-analysis where the same two treatments

are compared, published EFS and OAS at a predetermined set of time points during follow-up and accrual information are known. Data in each study consist of disease free survival and overall survival probabilities every 6 months for the first 5 years after treatment. Two separate meta-analyses are performed. First the survival rates of patients who received a 2-drug regimen are compared with those who received a 3-drug regimen. Then the survival rates of patients, treated with 3-drug versus 4-drugs were compared. The techniques described by Parmar¹⁸ and Fiocco¹⁹ were used to reconstruct the number of patients at risk, the number of deaths and the number of censored patients during the time intervals in each arm and each trial. Using these aggregate data, the treatment effect and the overall survival curves for the two arms were estimated by applying a Poisson correlated gamma frailty model as described in Fiocco. 17 Using this model, we were able to incorporate also studies with only one arm, while the traditional approach can be applied only when information concerning both treatment arms are given. This adds more efficiency to the results based on the statistical model.

3. Results

3.1. Pre-chemotherapy era studies

Nine historical studies were retrieved from 43 papers on treatment of localised OSS before the chemotherapy era (Table 1).

Long term survival of the combined 1555 patients after local tumour control without chemotherapy was 16% (9–23%). The typical course of the disease in these patients is reflected by the pattern of metastases, with 85% of patients developing pulmonary metastases, half of these within 6–8 months after local treatment (Fig. 3). With (neo) adjuvant chemotherapy, survival was higher, time to metastases was on average 1.5–2× longer, less pulmonary metastases but more extra-pulmonary metastases were observed compared with the historical group. $^{14,20-26}$

3.2. Single drug phase II studies

In order to get evidence for responsiveness of drugs, which are commonly used in OSS, phase II studies of M, A, P, Ifo and E as single drugs in pre-treated, relapsed or refractory patients were retrieved from literature. Among 140 papers, 50 were selected for this review (Table 2). Patients, entered in these studies, had relapsed or refractory disease. The data from studies showed high response rates of 43% for A, 33% for Ifo, 32% for M and 26% for P, all well above the predefined 20% threshold. E was included because some modern trials included this drug. However, E had a response rate of only 4%.

4. Description of neo-adjuvant chemotherapy studies

4.1. American OSS studies (Table 3)

4.1.1. Memorial Sloan Kettering Cancer Center (MSKKC)
The first neoadjuvant (Rosen's) T-5 protocol enabled limb salvage after shrinkage of the tumour by pre-operative MA.⁸³
The M-dose was escalated when no clinical or biochemical

Table 1 – Selected studies from treatment of localised osteosarcoma patients before the chemotherapy era. Nine papers with the total of 1555 patients with surgery or/and radiotherapy and follow-up of at least 5 year or more were selected out of more than 40 papers.

Institute	Study-period	Number of patients	Overall survival ≽5 year (%)	References
Karolinska Hospital Sweden	<1956	86	17	27
Westminster Hospital London	1951-1962	92	22	28
MSKCC New York	1949-1966	145	17	29
Mayo Clinics Rochester	1900-1966	465	18	30
Radium Hospital Oslo	1938-1964	102	18	31
Bristol Bone Tumour Register	1946-1972	149	17	32
Rizzoli Bologna	1959-1979	127	10	21
MD Anderson Cancer Center	1950-1974	213	9	6
Netherlands Bone Tumour Registry	1962–1969	176	23	7

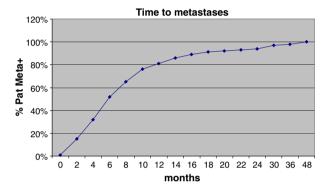


Fig. 3 – Pattern of clinical detectable metastases in patients with local treatment only (historical data). In 80–90% of all patients with OSS metastases develop in the lungs, other bones and rarely in lymph nodes and other organs. Half of the metastases develop between 6 and 8 months after local therapy, 75–90% occur within 1 year, and after 2–2.5 year the curve of development of metastases flattens.

response were present⁸⁴ and based on the excellent results after 2 years, chemotherapy was further intensified in T-7^{84,85} and T-10⁸⁶ by giving M at weekly intervals and replacement of cyclophosphamide by bleomycin, cyclofosfamide and actinomycin-D (BCD). To salvage pPR in the T-10 protocol, drugs post-operatively differed from those used preoperatively. The response rate in T-10 was lower than in the previous trial, due to early planning of surgery, but the EFS was similar as in T-7.⁸⁸ In the last randomised study (T-12),

a higher response rate in the more intensified arm resulted in a similar EFS (78%) to the control arm (73%) and to the previous (T-10) trial.⁸⁹ Again, despite an increased response rate, no improvement in EFS was achieved.

4.1.2. MD Anderson Cancer Center

In three subsequent studies (TIOS I–III), the response of preoperative chemotherapy was used to design postoperative treatment in 98 patients. Sixty seven patients were treated with M,A and P containing regimens, depending on the response on preoperative chemotherapy, but 31 patients refused surgery and were treated with chemotherapy only. These patients had a significant lower 5y-EFS (23%) compared to those who were treated with surgery and chemotherapy (5y-EFS 62%), 90,91 confirming that patients with localised OSS cannot be treated with chemotherapy alone. Intraarterial P was more effective than M in a subgroup of these patients. 90,92

4.1.3. Children's Cancer Group CCG782

The objectives of CCG-782 were to improve EFS compared to the adjuvant protocol CCG 741 and to evaluate the value of a grading system for histological response, using a T-10 based regimen. Although the outcome was significantly better than in CCG 741, the response rate and survival were lower than in Rosen's T-10 study. However, because CCG-741 was less intensive, the conclusion that the neo-adjuvant approach was better than adjuvant chemotherapy could not be generalised. pPR was a significant higher risk for an adverse event than pGR (relative risk 0.23, p < 0.0001).

Table 2 – Drugs with a response rate (CR plus PR) of ≥20%. Etoposide is included to demonstrate the response rate in a small number of studies.

Drug	Dose range	Number of	Number respo	nding patients	Response rate (%)	References
	(mg/m²/course)	patients	Complete remission (CR)	Partial remission (PR)		
Adriamycin	35–90	108	14	32	43	33-44
Ifosfamide	5.000-15.000	246	30	50	33	45–59
Methotrexate	80-15.000	164	26	26	32	60–70
Cisplatin	60–150	174	18	28	26	69,71–78
Etoposide	120–625	27	0	1	4	79–82

Table 3 – American OSS groups. In this table are included only studies with more than 50 patients (for drug names see list of abbreviations). BOTG: Brazilian Osteosarcoma Treatment Group. In addition: Ctx: Cyclophosphamide, Vc: Vincristin, Epi: Epirubicin, Ca: Carboplatin. LR and HR represent low risk (patients without HR criteria) and high risk (patients requiring an amputation or tumours >12 cm), respectively.

Study period Number of patients			Drug regimen		EFS (%)	OAS (%)
		Pre-operative	Post-operative			
MSKCC T10 1978–1981	153	M_{x4}	$pGR:[M_{x4} + A + BCD]_{x4};$ $pPR: M_{x4} + A + BCD + [AP_{x2} - BCD]_{x3}$	34	77 ^{3y}	82 ^{3y}
MSKCC T12	Pilot $(n = 51)$	$M_{x6} + BCD_{x2}$	GR:M-BCD; PR:AP _{x6}	41	75 ^{2y}	76 ^{2y}
1986–1993	MBCD (n = 26)	$M_{x4} + BCD$	$pGR:[M_{x2} + A + BCD]_{x4}; pPR:[M_{x2} + AP + BCD]_{x2} + [AP_{x2} + BCD]_{x2}$	39	73 ^{5y}	78 ^{5y}
	MAPBCD(n = 26)	$M_{x2} + AP_{x2} + BCD$	All: $[M_{x2} + A + BCD]_{x3} + BCD$	44	67 ^{5y}	73 ^{5y}
MD-Anderson	65	All	,	43	62 ^{5y}	_
1979–1989	TIOS-1 TIOS-3	M_{x12} versus P_{iartx7} P_{iartx7}	Resp: MAP _{x6} ; non-Resp: MA or MAP A ₄₅₀ or A ₄₅₀ – Cycl or A ₄₅₀ – VAC			
CCG 782 1983–1986	231	M_{x4} + BCD	$pGR:[M_{x4} + A + BCD]_{x4};$ $pPR: M_{x4} + ABCD + [AP_{x2} - BCD]x3$	28	53 ^{8y}	60 ^{8y}
POG 8651	100	ALL			65 ^{5y}	78 ^{5y}
1986–1993	neoadjuvant (n = 45) adjuvant (n = 55)	$M_{x4} + AP_{x2}$	$M_{x8} + A + AP_{x2} + BCD_{x5}$ $M_{x12} + A + AP_{x4} + A + BCD_{x5}$	62	61 69	76 79
SWOG 9139 1992–1996	63	$AP_{x2} + AI_{x2}$	$AP_{x2} + AI_{x2}$	48	41 ^{5y}	58 ^{5y}
INT 0133	677	ALL		45	64 ^{6y}	74 ^{6y}
1993-1997	MAP $(n = 340)$	$M_{x4}AP_{x2}$	$M_{x8} + AP_{x2} + A_{x2} \pm L-MTP$	43	63	73
	MAPIfo $(n = 337)$	$M_{x4}AI_{x2}$	$M_{x8} + AP_{x2} + AIfo_{x2} + P_{x2}$ + $Ifo_{x2} \pm L-MTP$	48	64	75
			MAP(Ifo) – MTP		61	70
			MAP(Ifo) + MTP		67	78
BOTG	225		,	29	39 ^{10y}	47 ^{10y}
1991–1996 (study III)	96/105	IfoEpiCax2	LR: IfoEpix3 + IfoCa + EpiCa; HR: LR + Mx6	47	40	50
1996–1999 (study IV)	113/120	APCax3	IPx2 + IAx2 + ACa + ICa	18	38	44

4.1.4. Pediatric Oncology Group POG 8561

This randomised study compared immediate and delayed surgery after an induction of 2 cycles MAP.95 Outcome was not significantly different between both arms. Patients, who had <10% viable tumour after induction, had a significant better EFS (73%) than patients with pPR. It was concluded that timing of surgery did not influence outcome and that a better response was not translated into a survival benefit.

4.1.5. South West Oncology Group SWOG 9139

In order to assess the efficacy of additional Ifo, 63 patients were treated with a regimen consisting of A and P, alternated with Ifo.96 With a response rate of nearly 50% and 5y-OAS of 58%, the authors concluded that this 3-drug regimen did not improve outcome compared with prior regimens of A and P alone and that the value of increasing dose intensity by adding drugs in OSS is limited.

4.1.6. Children's Oncology Group Intergroup study INT0133 In a randomised 2 × 2 factorial study INT0133 the value of Ifo as a 4th drug compared with MAP and the addition of the immune modulating agent liposomal muramyl tripeptide (MTP) to chemotherapy were investigated. 97,98 Analysis after 4 year follow-up suggested an interaction between Ifo and MTP but re-analysis after 6 years FU showed no evidence of interaction. 98 A significant (p = 0.03) improvement of OAS when MTP was added to chemotherapy (6y-OAS 78% versus 70% in chemotherapy alone) was observed while outcome of MA-PIfo versus MAP were similar. Due to the complex design and interaction concerns of this study, the relevance of these conclusions have been challenged.99

4.1.7. Brazilian studies

Both the EFS and OAS were lower in a regimen that did not contain M, but Ifo and Epirubicin plus Carboplatin (study III), 100 both were considered less active drugs in OSS. In Study IV, A was added to the regimen of study III, without better results.

4.2. European OSS study groups

4.2.1. Cooperative Osteosarcoma Study Group (COSS) studies (Table 4)

The first neoadjuvant study of the COSS (COSS-80) demonstrated a significant better survival compared with the COSS-77 adjuvant study. 101,102 Randomisation in this study did not show any difference between P and BCD and Interferon-β was of no additional benefit. 102 The following trial, COSS-82, investigated the reduction of intensity of pre-operative chemotherapy and salvage of poor responders. The overall results were worse than the previous trial and M-BCD not only showed a significant lower response rate compared with AP, but the pPR had also a significant worse survival. 103 It was concluded from this randomised trial that salvage by changing drugs failed. 104 Therefore, in COSS-86, chemotherapy was intensified by adding Ifo to an already aggressive regimen of MAP for high risk (definition risk groups: see Table 4) patients. 105 Furthermore, in a controlled way the question was addressed whether intra-arterial administration of P would yield a higher response rate, hence a better outcome. With a

8 67¹⁰y 69 65 65 64¹⁰y 64¹⁰y 75 71¹⁰y 71 OAS (558 10y 559 50 10y 50 10y 55 66 10y 66 69 69 69 69 69 69 53 $pGR:A_{x3} + M_{x10} + P_{x2}; pPR:A_{x4} + M_{x12} + PIfo_{x3}$ $pGR:M_{x4} + AP_{x2}$; $pPR:IfoP_{x3} + BCD_{x3}$ Post-operative $pGR:M_{x4} + BCD_{x2}$; $pPR:AP_{x6}$ $M_{x10} + A + BCD_{x3} \pm Ifn$ $M_{x10} + A + P_{x3} \pm Ifn$ Drug regimen LR: $A + M_{x2} + P_{x2}$ HR: AMx2PIfox2 Pre-operative $M_{x4} + A + BCD$ $M_{x4} + A + P$ $M_{x4} + BCD_{x2}$ $M_{x4} + AP_{x2}$ Number of patients 125 171 Study period COSS 80 1979–1982 COSS 82 1982-1984 **COSS 86**

 $A_{x4} + M_{x12} + PIfo_{x3}$

long term EFS of 66%, these results were the best published so far by COSS. 104,105 In both high and low risk patients, the response rate was nearly similar, and like the previous studies, pGR had a significant better survival than pPR. No benefit of the intra-arterial use of P on tumour response or survival was seen. 105,106

4.2.2. Istituto Ortopedico Rizzoli (IOR/OS) studies (Table 5) In the first IOR/OS study it was shown that high-dose M regimens had a significantly better outcome than low-dose M and that salvage of pPR by changing drugs failed. 107,108 Subsequently, a greater response rate and better salvage therapy by more intensive pre-operative chemotherapy and the addition of Ifo and E for pPR, respectively, resulted in a significant better EFS in the next trial, IOR/OS-2. 109,110 The following trial demonstrated that the cumulative dose of A safely could be reduced to 390 mg/m², and Ifo alone instead of Ifo plus E could be used to salvage for pPR. 111 IOR/OS-4 succeeded in increasing the response rate to 77% by further intensifying pre-operative chemotherapy, which was not translated into a better outcome. 112 Finally the effect of giving all four effective drugs at maximum dosages was feasible but did not yield a superior outcome compared with standard Ifo dose. 113,114 The value of the intra-arterial administration of P was investigated in the IOR-studies as well, but despite a higher response rate in the less intensive IOR-OS-3 study, no effect on the EFS or surgical procedure was present. 115 In the more intensive IOR-OS-4 both administration routes were equally efficient.

4.2.3. Scandinavian Sarcoma Group (SSG) studies (Table 6) In study SSG-II, the results of Rosen's T-10 protocol could not be confirmed. The modest response rate (17%) and low outcome of pPR patients indicated an insufficient effect of single agent M as induction treatment and the salvage of pPR by changing drugs. The next study SSG-VIII was a MAP based induction, with change to IfoE to salvage pPR. The response rate increased to 57%, but long term survival and EFS for pPR were not different compared to SSG-II, indicating that a better response rate was not translated into a survival advantage and salvage for pPR by changing drugs failed.

4.2.4. European Osteosarcoma Intergroup (EOI) trials (Table 7)

The EOI compared, in 2 randomised trials, the role of AP based regimens with multidrug regimens. 119,120 EFS in the AP-arm of study 80831 was significantly better (HR=0.63;95% CI(0.42-0.94)) than in the MAP arm, but no difference in OAS was observed (HR=0.69;95% CI(0.43-1.09)). 119 In the next trial (80861) outcome was similar in the AP and multi-drug arm and the AP-regimen was preferred because of the better tolerability. 120 However, in the 80831 trial, the total dose intensity of AP in the MAP-arm was reduced to 2/3 of AP in the 2-drug arm. 119 In study 80861 the received dose intensity of P and A in the multidrug arm were 52% and 62%, respectively, whereas in the 2-drug arm this was 78% for both drugs. 120 In the 80931 study it was possible to increase the dose intensity by shortening the interval between subsequent cycles of chemotherapy, using G-CSF, by 30%. 121 This resulted in a significant (p = 0.003) higher proportion of pGR. However, outcome was

Table 5 – Istituto Orthopedica Rizzoli (IOR) results. Successiv low dose M (0.75 g/m²) and high dose M (7.5 g/m²). M-doses is group without TN.	Rizzoli (IOR) results. Succes gh dose M (7.5 g/m²). M-dos	ssive chemotherapeuti ses are noted by supers	Table 5 – Istituto Orthopedica Rizzoli (IOR) results. Successive chemotherapeutic protocols of IOR (drug names see list of abbreviations). The first study randomised between low dose M (0.75 g/m²) and high dose M (7.5 g/m²). M-doses are noted by superscript in pre-operative column, and are post-operatively the same. TN is total necrosis, No-TN is group without TN.	itions). The first itively the same	study randomi TN is total nec	sed between rosis, No-TN
Study period	Number of patients		Drug regimen	pgr (%)	EFS (%)	OAS (%)
		Pre-operative	Post-operative			
IOR/OS 1 1983–1986	127			52	46 ^{12y}	53 ¹² y
	MDMTX $(n = 60)$	$M^{0.75}P_{x2}$	$pGR: A + MAP_{x3}; pPR: A-BCD_{x5}$	42	38^{12y}	45^{12y}
	HDMTX $(n = 67)$	$\mathrm{M}^{7.5}\mathrm{P_{x2}}$		62	52^{12y}	61^{12y}
IOR/OS-2 1986-1989	164	M^8AP_{x2}	$pGR: A + MAP_{x3}; pPR A + MAPIfoE_{x3}$	71	63 ^{5y}	75 ^{5y}
IOR/OS-3 1990-1991	95	$ m M^{10}AP_{x2}$	$pGR: A + MAP_{x3}; pPR: A + MAPIfo_{x3}$	26	54 ^{7y}	69 _{7y}
IOR/OS-4 1993-1995	162	$ m M^{12}APIfo_{x2}$	No-TN: MAPIfo _{x3} + AM; TN: MAPIfo _{x2} + AM	77	56 ^{7y}	71^{7y}
ISG/SSG-pilot 1995-1997	89	$ m M^{12}APIfo_{x2}$	pGR: MAPIfo _{x2} ; pPR:MAPIfo _{x2} + MIfoP	26	73 ^{4y}	87 ⁴ y
ISG/SSG-1 1997-2000	182	$ m M^{12}APIfo_{x2}$	p_{GR} : MAPI fo_{x2} ; p_{PR} : MAPI fo_{x3}	09	64 ^{5y}	77 ^{5y}

Table 6 – Scandinavian Sa	arcoma Group (SSG) results. S	ummary of the results	of the SSG since 1982 (drug names see list o	f abbreviations).		
Study period	Number of patients		Drug regimen	GR (%)	EFS (%)	OAS (%)
		Pre-operative	Post-operative			
SSG-II 1982–1989 SSGVIII 1990–1997 ISG/SSG-1 1997–2000	97 113 182	$M_{\chi 4}^{12/8} \ M_{\chi 4}^{12} AP_{\chi 2} \ M_{\chi 2}^{12} AP_{\chi 2} Ifo_{\chi 2}$	$pGR:M_{x16} + BCD_{x4}; pPR:M_{x4} + AP_{x6}BCD_{x4}$ $pGR:M_{x2}AP_{x3}; pPR:IfoE_{x5}$ $pGR:MAPIfo]_{x2}; pPR:[MAPIfo]_{x2} + [MIfoP]$	17 58 60	56 ^{5y} 61 ^{5y} 64 ^{5y}	66 ^{5y} 74 ^{5y} 77 ^{5y}

Table 7 – EOI results. Summary of results of the 3 randomised EOI trials since 1983 (drug names see list of abbreviations). The number of patients in each arm is given between brackets. In the column "Patient number" arms C and DI represent the conventional dose and the dose intensive regimen respectively. All M doses are 12 g/m², the number of courses are indicated by the subscript figures.

Study period	Number of patients	Drug	g Regimen	GR (%)	EFS (%)	OAS (%)
		Pre-operative	Post-operative			
EORTC 80831 1983-1986	179					
	AP $(n = 99)$	AP _{x3}	AP_{x3}	41	57 ^{5y}	64 ^{5y}
	MAP $(n = 99)$	MAP_{x2}	MAP_{x2}	22	41 ^{5y}	50 ^{5y}
EORTC 80861 1986-1991	391					
	AP (n = 199)	AP_{x3}	AP_{x3}	30	44 ^{5y}	55 ^{5y}
	multidrug (n = 192)	$M_{x4}A$	$M_{x4}A + BCP_{x4}AP_{x6}$	29	44 ^{5y}	55 ^{5y}
EORTC 80931 1993-2002	504					
	C (250)	AP_{x2}	AP_{x4}	36	39 ^{5y}	55 ^{5y}
	DI (254)	AP_{x3}	AP_{x3}	51	41 ^{5y}	58 ^{5y}

Table 8 – Other European study groups. Studies from France a Société Française d'Oncologie Pédiatrique, HELP: Holoxan (Ifo)	ly groups. Studies from Fra Pédiatrique, HELP: Holoxa	nnce and (former Eastern) Germany (for drug names n (Ifo), Eldesine (Vindesine, V), Cisplatin (P) with A.	lable 8 – Other European study groups. Studies from France and (former Eastern) Germany (for drug names see list of abbreviations). IGR: Institute Gustave Roussy, SFOP: Société Française d'Oncologie Pédiatrique, HELP: Holoxan (Ifo), Eldesine (Vindesine, V), Cisplatin (P) with A.	ns). IGR: Institu	ite Gustave Ro	ussy, SFOP:
Study group period	Number of patients		Drug regimen	GR (%)	EFS (%)	(%) SO
		Pre-operative	Post-operative			
T-10 IGR-Paris 1981–1986	70	$M_{x7} + BCD + A$	pGR: [M _{x4} A-BCD] _{x3} ; pPR:[AP _{x2} -BCD] _{x3}	26	68 ⁷ y	74 ⁷ y
SFOP-HELP 1989-1993	62	$M_{x7} + Ifo_{x2} + V_{x2} + AP_{x2}$	$M_{x6} + Ifo_{x2} + V_{x2} + AP_{x2}$	64	59 ^{5y}	77 ⁵ y
SFOP 1994-2001	234				62^{5y}	76 ^{5y}
	MA $(n = 116)$	$M_{x7} + A_{x2}$	$pGR: M_{x12} + A_{x3}; pPR: IfoE_{x5}$	43	28	75
	MIfoE $(n = 118)$	$M_{x7} + IfoE_{x2}$	$pGR: M_{x12} + IfoE_{x3}; pPR: AP_{x5}$	64	99	9/
Berlin 1986–1992	. 23	[APCtxVc] _{x3}	[APCtxVc] _{x6}	45	59 ^{10y}	67 ¹⁰ y

similar in both arms, suggesting that the increased histological response rate was reflecting the given pre-operative dose and not translated into better survival.

4.2.5. French OSS studies (Table 8)

The first single centre study aimed to reproduce the findings of Rosen's T-10 protocol and showed similar results. ¹²² The next study was MAPIfo based, resulting in a better response rate, but no improved survival. ¹²³ The last trial SFOP-94, was a randomised comparison between MIfoE and MA¹²⁴ and showed a better response rate in the IfoE arm, but the outcome was not statistically different.

4.2.6. Berlin study (Table 8)

Tunn et al. demonstrated in a small cohort of 53 patients that a multidrug regimen without M achieves similar survival rates to M-based schedules. 125

5. Statistical results and meta-analysis

Two drug, 3-drug and 4-drug regimens as listed in table 9 were used for meta-analysis, according to Parmar¹⁸ and Fiocco. ^{17,19} For each study-arm multiple EFS and OAS corresponding to a predetermined set of time points (0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,10 years) were known. The meta-analysis on EFS shows an improvement in survival by employing a three instead of two-drug regimen, which is significant (HR: 0.701, 95% CI: 0.615–0.799; Fig. 4). The same was demonstrated for the OAS as is shown in Fig. 5 (HR: 0.792, 95% CI: 0.677–0.926). Treatment effect was not significantly different between regimens with 3 drugs and 4 drugs with respect to either EFS (HR: 0.956; 95% CI: 0.779–1.177) or OAS (HR: 1.043; 95% CI: 0.851–1.280). Figs. 6 and 7 illustrate the estimated means survival for EFS and OAS, respectively.

6. Discussion

Data from single agent phase II studies in OSS patients for M, A, P and Ifo show response rates ≥20%, indicating the effectiveness of these drugs. Several investigators confirmed the importance of A in a sufficient dose, for example 390included in 450 mg/m^2 , to be regimens OSS. 103,104,107,111,126-128 A number of studies addressed the question whether or not high-dose M is essential for adequate treatment of OSS. 96,100,119,120,125 Survival outcomes of the SWOG, the Brazilian Osteosarcoma Study group and the EOI without M all are around 40-55%, 96,100,119-121 lagging behind the results of the M containing regimens of the COSS, IOR/OS, SSG and INT0133. The conclusion of the EOI that AP was superior¹¹⁹ or equal¹²⁰ to M-based regimes must be interpreted with caution because of the inequalities in total dose intensity. 119,120,129

To cope with heterogeneity between studies a Poisson correlated gamma frailty model has been used in this analysis. The results show a significant (p = 0.03) different 5y-EFS in 2-drug regimens (46%) compared with 3-drug regimens (54%) (Fig. 4). The five year-OAS of the 2- versus 3 drug regimens were 60% and 66%, respectively, (p = 0.04; Fig. 5), justifying 3-drug regimens in current OSS protocols.

Table 9 – Studies included in the meta-analysis to estimate survival (EFS and OS) at different time points. From these aggregate survival data, the difference between 2-drug and 3-drug regimens was estimated by employing a Poisson correlated frailty model (see text for details and references). Two drug regimens used for analysis were AP from the EOI-80831, EOI-80861, both AP-arms from study EOI-80931 and the MA-arm from SFOP-OS94. Three drug regimens used in the analysis were the MAP regimens from the randomised EOI-80831, COSS-80, COSS-82, INT-0133 and SFOP-OS94 studies, as well as the non-randomised IOR/OS-2 and -3 and SSG-VIII studies. The four-drug regimens which were used in the meta-analysis were the multi-drug arm of EOI-80861, the high-risk patients of COSS-86, the IOR/OS-4, ISG-SSG studies, the 4-drug arms of the randomised INT-0133 study and the POG-8651 multidrug study.

2-drug regimens	3-drug regimens	4-drug regimens
EOI-80831	EOI-80831	EOI-80861
EOI-80861	COSS-80	COSS-86
EOI-80931	COSS-82	IOR/OS-4
SFOP-OS94	IOR/OS-2	ISG-SSG-I
	IOR/OS-3	INT 0133
	SSG-VIII	POG 8651
	INT 0133	
	SFOP-OS94	

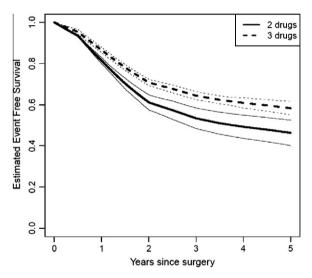


Fig. 4 – Estimated events free survival (EFS) based on metaanalysis of 5 two-drug regimens versus 8 three-drug regimens. Mean values of EFS are estimated along with their confidence intervals: HR = 0.701; 95% CI (0.615–0.799).

Whether or not a fourth drug has to be added to MAP remains an unsolved question. The meta-analysis comparing 3-drug regimens (n = 9) with 4-drug regimens (n = 6) did not show a difference in EFS and OAS between the 2 arms (Figs. 6 and 7). This indicates that there is no benefit of a fourth drug in treatment regimens.

The question how to salvage patients who respond poorly on preoperative treatment cannot simply be answered. Using different drugs and/or intensification after surgery has not shown to been beneficial. 88,103,104,107,117 Because in many studies histological response has been an highly important prognostic factor, intensifying pre-operative chemotherapy not only increases the response rate, 104,105,107,118 but also leads to better survival in most studies. 105,111,130 Although getting a higher intratumoural drug concentration by intraarterial infusions in possible, resulting in a high fraction of tumour cell necrosis, 69,78,106,115,131-133 this route of adminis-

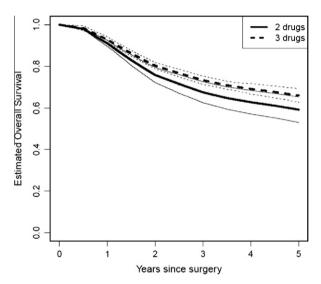


Fig. 5 – Estimated overall survival (OAS) based on metaanalysis of 5 two-drug regimens versus vs 8 three-drug regimens. Mean value of OAS are estimated along with their confidence intervals: HR = 0.792; 95% CI (0.677–0.926).

tration does not result in a better survival than when given intravenously. 78,105,106,115,134 Therefore, intensifying chemotherapy beyond a certain level does not improve outcome, neither for pGR nor for salvage pPR. 89,95,113,114,118,121 Probably the results of the EURAMOS-1 study will give an answer whether or not patients with a pPR benefit from Ifo and E, added to MAP (www.euramos.org). As was suggested by Meyers in 1992,88 intensive upfront treatment to increase the proportion of pGR has shown that the response rate improves, but this is not necessarily accompanied with better survival, which has been shown in other studies as well. 89,105,112,114,118,121,123,130,135,136 Limitations of treatment due to toxicity 114,123 and lack of efficacy despite maximal dosages^{105,114,121,123,137} prevent further improvement in outcome. Therefore, new approaches have to be investigated, such as immune modulating agents as MTP97,98,138,139 or inter-

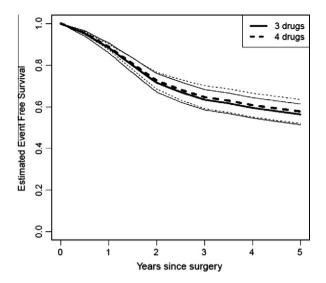


Fig. 6 – Estimated EFS curve based on the meta-analysis of 8 three-drug regimens versus 7 four-drug regimens. As illustrated, the survival curves are completely overlapping. HR = 0.956; 95% CI (0.779–1.177).

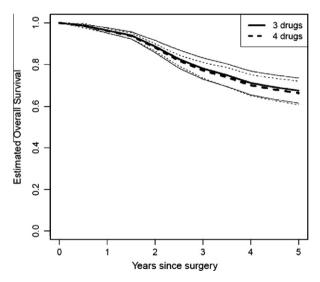


Fig. 7 – Estimated OAS curve based on meta-analysis of eight 3-drug regimens versus seven 4-drug regimens. Similar as in , the survival curves are overlapping, indicating no difference between both arms. HR = 1.043; 95% CI (0.851–1.280).

feron^{140,141} as well as molecular approaches.¹⁴² International large collaborative randomised studies in the last decennia, did regrettably not result in further improved survival. Our opinion is that Bayesian designed rapid turnover trials with biological end-points should be encouraged to explore the field of new ways of treatment of this resistant disease. It is emphasised here that this kind of studies only can be successful in international collaboration.

In summary: early phase-II trials demonstrated that A, M, P and Ifo have a proven single agent efficacy against OSS. Meta-analysis showed a significant advantage of 3-drug over

2-drug regimens, but the use of a fourth drug is not better than 3 drugs. Whether or not dose intensification after a poor response to preoperative chemotherapy improves survival remains an open question.

Conflict of interest statement

None of the authors of this manuscript, entitled: "Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand", has a conflict of interest.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ejca.2011.05.030.

REFERENCES

- Raymond AK, Ayala AG, Knuutila K. Conventional osteosarcoma. In: Fletcher CDM, Unni KK, Mertens F, editors. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. Lyon: IARC Press; 2002. p. 264–70.
- Stiller CA, Bielack SS, Jundt G, Steliarova-Foucher E. Bone tumours in European children and adolescents, 1978–1997.
 Report from the Automated Childhood Cancer Information System project. Eur J Cancer 2006;42(13):2124–35.
- Mirabello L, Troisi RJ, Savage SA. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int J Cancer 2009;125(1):229–34.
- Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer 2009;115(7):1531–43.
- 5. Campanacci M, Cervellati G. Osteosarcoma: A review of 345 cases. Ital J Orthop Traumatol 1975;1(1):5–22.
- Uribe-Botero G, Russell WO, Sutow WW, Martin RG. Primary osteosarcoma of bone. Clinicopathologic investigation of 243 cases, with necropsy studies in 54. Am J Clin Pathol 1977;67(5):427–35.
- Cohen P. Osteosarcoma of the long bones. Clinical observations and experiences in the Netherlands. Eur J Cancer 1978;14(9):995–1004.
- 8. Mulder JD, Schütte HE, Kroon HM, Taconis WK. Radiologic atlas of bone tumors. 2 ed. Amsterdam, Elsevier, 1993.
- Unni KK. Dahlin's Bone Tumors General Aspects and Data on 11,087 Cases. 5th ed. Philadelphia, Lippincott-Raven Publishers, 1996.
- Bielack SS, Kempf-Bielack B, Delling G, et al. Prognostic Factors in High-Grade Osteosarcoma of the Extremities or Trunk: An Analysis of 1, 702 Patients Treated on Neoadjuvant Cooperative Osteosarcoma Study Group Protocols. J Clin Oncol 2002;20(3):776–90.
- 11. Stiller CA, Craft AW, Corazziari I. Survival of children with bone sarcoma in Europe since 1978: results from the EUROCARE study. Eur J Cancer 2001;37(6):760–6.
- 12. Gatta G, Capocaccia R, Coleman MP, Ries LA, Berrino F. Childhood cancer survival in Europe and the United States. *Cancer* 2002;**95**(8):1767–72.
- Gatta G, Capocaccia R, Stiller C, et al. Childhood cancer survival trends in Europe: a EUROCARE Working Group study. J Clin Oncol 2005;23(16):3742–51.

- Magnani C, Pastore G, Coebergh JW, et al. Trends in survival after childhood cancer in Europe, 1978–1997: report from the Automated Childhood Cancer Information System project (ACCIS). Eur J Cancer 2006;42(13):1981–2005.
- Stiller CA, Passmore SJ, Kroll ME, et al. Patterns of care and survival for patients aged under 40 years with bone sarcoma in Britain, 1980–1994. Br J Cancer 2006;94(1):22–9.
- 16. Gatta G, Zigon G, Capocaccia R, et al. Survival of European children and young adults with cancer diagnosed 1995–2002. Eur J Cancer 2009;45(6):992–1005.
- 17. Fiocco M, Putter H, Van Houwelingen JC. A new serially correlated gamma-frailty process for longitudinal count data. Biostatistics 2009;10(2):245–57.
- Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med 1998;17(24):2815–34.
- Fiocco M, Putter H, Van Houwelingen JC. Meta-analysis of pairs of survival curves under heterogeneity: a Poisson correlated gamma-frailty approach. Stat Med 2009;28(30):3782–97.
- Cortes EP, Holland JF, Glidewell O. Amputation and adriamycin in primary osteosarcoma: a 5-year report. Cancer Treat Rep 1978;62(2):271–7.
- 21. Campanacci M, Bacci G, Bertoni F, et al. The treatment of osteosarcoma of the extremities: twenty year's experience at the Istituto Ortopedico Rizzoli. *Cancer* 1981;48(7):1569–81.
- 22. Jaffe N, Smith E, Abelson HT, Frei III E. Osteogenic sarcoma: alterations in the pattern of pulmonary metastases with adjuvant chemotherapy. *J Clin Oncol* 1983;1(4):251–4.
- 23. Link MP, Goorin AM, Miser AW, et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med 1986;314(25):1600–6.
- Huth JF, Eilber FR. Patterns of recurrence after resection of osteosarcoma of the extremity. Strategies for treatment of metastases1. Arch Surg 1989;124(1):122–6.
- Goorin AM, Shuster JJ, Baker A, et al. Changing pattern of pulmonary metastases with adjuvant chemotherapy in patients with osteosarcoma: results from the multiinstitutional osteosarcoma study1. J Clin Oncol 1991;9(4):600–5.
- Bacci G, Ferrari S, Longhi A, et al. Pattern of relapse in patients with osteosarcoma of the extremities treated with neoadjuvant chemotherapy9. Eur J Cancer 2001;37(1):32–8.
- 27. Lindbom A, Soderberg G, Spjut HJ. Osteosarcoma. A review of 96 cases. Acta Radiol 1961;56:1–19.
- ES LEE, Mackenzie DH. Osteosarcoma. A study of the value of preoperative megavoltage radiotherapy. Br J Surg 1964;51:252–74.
- 29. Marcove RC, Mike V, Hajek JV, Levin AG, Hutter RV. Osteogenic sarcoma under the age of twenty-one. A review of one hundred and forty-five operative cases. *J Bone Joint Surg Am* 1970;**52**(3):411–23.
- 30. Gaffney R, Unni KK, Sim FH, et al. Follow-up study of longterm survivors of osteosarcoma in the prechemotherapy era. Hum Pathol 2006;37(8):1009–14.
- 31. Poppe E, Liverud K, Efskind J. Osteosarcoma. Acta Chir Scand 1968;134(7):549–56.
- 32. Price CH, Jeffree GM. Metastatic spread of osteosarcoma. Br J Cancer 1973;28(6):515–24.
- Bonadonna G, Monfardini S, De LM, Fossati-Bellani F, Beretta G. Phase I and preliminary phase II evaluation of adriamycin (NSC 123127). Cancer Res 1970;30(10):2572–82.
- Middleman E, Luce J, Frei III E. Clinical trials with adriamycin. Cancer 1971;28(4):844–50.
- Wang JJ, Cortes E, Sinks LF, Holland JF. Therapeutic effect and toxicity of adriamycin in patients with neoplastic disease. Cancer 1971;28(4):837–43.

- Cores EP, Holland JF, Wang JJ, Sinks LF. Doxorubicin in disseminated osteosarcoma. JAMA 1972;221(10):1132–8.
- Friedman MA, Carter SK. The therapy of osteogenic sarcoma: current status and thoughts for the future. J Surg Oncol 1972;4(5):482–510.
- 38. O'Bryan RM, Luce JK, Talley RW, et al. Phase II evaluation of adriamycin in human neoplasia. *Cancer* 1973;32(1):1–8.
- Tan C, Etcubanas E, Wollner N, et al. Adriamycin an antitumor antibiotic in the treatment of neoplastic diseases. Cancer 1973;1:9–17.
- Benjamin RS, Wiernik PH, Bachur NR. Adriamycin chemotherapy–efficacy, safety, and pharmacologic basis of an intermittent single high-dosage schedule. *Cancer* 1974;33(1):19–27.
- 41. Pratt CB, Shanks EC. Doxorubicin in treatment of malignant solid tumors in children. Am J Dis Child 1974;127(4):534–6.
- Ragab AH, Sutow WW, Komp DM, et al. Adriamycin in the treatment of childhood solid tumors. A Southwest Oncology Group study. Cancer 1975;36(5):1567–76.
- van Dyk JJ, van der Merwe AM, Falkson HC, Falkson G. Adriamycin in the treatment of cancer. S Afr Med J 1976;50(3):61–6.
- 44. Schoenfeld DA, Rosenbaum C, Horton J, et al. A comparison of adriamycin versus vincristine and adriamycin, and cyclophosphamide versus vincristine, actinomycin-D, and cyclophosphamide for advanced sarcoma. *Cancer* 1982;50(12):2757–62.
- Niederle N, Scheulen ME, Cremer M, et al. Ifosfamide in combination chemotherapy for sarcomas and testicular carcinomas. Cancer Treat Rev 1983;10(Suppl. A):129–35.
- Antman KH, Montella D, Rosenbaum C, Schwen M. Phase II trial of ifosfamide with mesna in previously treated metastatic sarcoma. Cancer Treat Rep 1985;69(5):499–504.
- Marti C, Kroner T, Remagen W, et al. High-dose ifosfamide in advanced osteosarcoma. Cancer Treat Rep 1985;69(1):115–7.
- Magrath I, Sandlund J, Raynor A, et al. A phase II study of ifosfamide in the treatment of recurrent sarcomas in young people. Cancer Chemother Pharmacol 1986;18(Suppl. 2):S25–8.
- Antman KH, Ryan L, Elias A, Sherman D, Grier HE. Response to ifosfamide and mesna: 124 previously treated patients with metastatic or unresectable sarcoma. J Clin Oncol 1989;7(1):126–31.
- Pinkerton CR, Pritchard J. A phase II study of ifosfamide in paediatric solid tumours. Cancer Chemother Pharmacol 1989;24(Suppl. 1):S13-5.
- Schwartzman E, Scopinaro M, Angueyra N. Phase II study of ifosfamide as a single drug for relapsed paediatric patients. Cancer Chemother Pharmacol 1989;24(Suppl. 1):S11–2.
- Chawla SP, Rosen G, Lowenbraun S, Morton D, Eilber F. Role of high dose ifosphamide (HDI) in recurent osteosarcoma. ASCO Annual Meeting Proceedings 1990;9:310.
- Benjamin RS, Legha SS, Patel SR, Nicaise C. Single-agent ifosfamide studies in sarcomas of soft tissue and bone: the M.D. Anderson experience. Cancer Chemother Pharmacol 1993;31(Suppl. 2):S174–9.
- 54. Harris MB, Cantor AB, Goorin AM, et al. Treatment of osteosarcoma with ifosfamide: comparison of response in pediatric patients with recurrent disease versus patients previously untreated: a Pediatric Oncology Group study. Med Pediatr Oncol 1995;24(2):87–92.
- Gullu I, Yalcin S, Tekuzman G, et al. High-dose ifosfamide by infusion with Mesna in advanced refractory sarcomas. Cancer Invest 1996;14(3):239–42.
- 56. Picci P, Bacci G, Ferrari S, Comandone A, Tienghi A. Salvage treatment with high dose ifosfamide and surgery for osteosarcoma patients relapsed with lung metastases. Preliminary Results. ASCO Annual Meeting Proceedings 1996;14:459.

- Pratt CB, Luo X, Fang L, et al. Response of pediatric malignant solid tumors following ifosfamide or ifosfamide/ carboplatin/etoposide: a single hospital experience. Med Pediatr Oncol 1996;27(3):145–8.
- Berrak SG, Pearson M, Berberoglu S, Ilhan IE, Jaffe N. Highdose ifosfamide in relapsed pediatric osteosarcoma: therapeutic effects and renal toxicity. *Pediatr Blood Cancer* 2005;44(3):215–9.
- 59. Meazza C, Casanova M, Luksch R, et al. Prolonged 14-day continuous infusion of high-dose ifosfamide with an external portable pump: feasibility and efficacy in refractory pediatric sarcoma. Pediatr Blood Cancer 2010;55(4):617–20.
- Jaffe N, Paed D, Farber S, et al. Favorable response of metastatic osteogenic sarcoma to pulse high-dose methotrexate with citrovorum rescue and radiation therapy. Cancer 1973;31(6):1367–73.
- Jaffe N. Progress report on high-dose methotrexate (NSC-740) with citrovorum rescue in the treatment of metastatic bone tumors. Cancer Chemother Rep 1974;58(2):275–80.
- Pratt CB, Roberts D, Shanks EC, Warmath EL. Clinical trials and pharmacokinetics of intermittent high-dose methotrexate-"leucovorin rescue" for children with malignant tumors. Cancer Res 1974;34(12):3326–31.
- Ambinder EP, Perloff M, Ohnuma T, Biller HF, Holland JF. High dose methotrexate followed by citrovorum factor reversal in patients with advanced cancer. Cancer 1979;43(4):1177–82.
- 64. Rosen G, Nirenberg A, Juergens H, Caparros B, Huvos AG. Response of primary osteogenic sarcoma to single agent therapy with high-dose methotrexate with citrovorum factor rescue. In: Current chemotherapy and infectious diseases. Proceedings of the 11th international congress of chemotherapy and the 19th interscience conference on antimicrobial agents and chemotherapy; 1979. p.1633-5.
- Frei III E, Blum RH, Pitman SW, et al. High dose methotrexate with leucovorin rescue. Rationale and spectrum of antitumor activity. Am J Med 1980;68(3):370–6.
- Pratt CB, Howarth C, Ransom JL, et al. High-dose methotrexate used alone and in combination for measurable primary or metastatic osteosarcoma. Cancer Treat Rep 1980;64(1):11–20.
- Kimura K. High-dose methotrexate for adult malignancies.
 Experimental and clinical results. Cancer Bulletin 1981;33:67–71.
- 68. Jaffe N, Bowman R, Wang YM. Chemotherapy for primary osteosarcoma by intra-arterial infusion. Review of the literature and comparison with results achieved by the intravenous route. Cancer Bulletin 1984;36(1):37–42. Date of Publication: 1984.
- 69. Jaffe N, Robertson R, Ayala A, et al. Comparison of intraarterial cis-diamminedichloroplatinum II with high-dose methotrexate and citrovorum factor rescue in the treatment of primary osteosarcoma. *J Clin Oncol* 1985;3(8):1101–4.
- Wagener DJ, Van Oosterom AT, Mulder JH, et al. Phase II study of low-dose methotrexate in advanced osteosarcoma followed by escalation after disease progression: a study of the Soft Tissue and Bone Sarcoma Group of the European Organization for Research on Treatment of Cancer. Cancer Treat Rep 1986;70(5):615–8.
- Nitschke R, Starling KA, Vats T, Bryan H. Cisdiamminedichloroplatinum (NSC-119875) in childhood malignancies: a Southwest Oncology Group study. Med Pediatr Oncol 1978;4(2):127–32.
- Ochs JJ, Freeman AI, Douglass Jr HO, et al. Cis-Dichlorodiammineplatinum (II) in advanced osteogenic sarcoma. Cancer Treat Rep 1978;62(2):239–45.
- Baum ES, Gaynon P, Greenberg L, Krivit W, Hammond D. Phase II trail cisplatin in refractory childhood cancer: Children's Cancer Study Group Report. Cancer Treat Rep 1981;65(9–10):815–22.

- Mavligit GM, Benjamin R, Patt YZ, et al. Intraarterial cisplatinum for patients with inoperable skeletal tumors. Cancer 1981;48(1):1–4.
- 75. Jaffe N, Knapp J, Chuang VP, et al. Osteosarcoma: intraarterial treatment of the primary tumor with cis-diamminedichloroplatinum II (CDP). Angiographic, pathologic, and pharmacologic studies. *Cancer* 1983;51(3):402–7.
- 76. Gasparini M, Rouesse J, van OA, et al. Phase II study of cisplatin in advanced osteogenic sarcoma. European Organization for Research on Treatment of Cancer Soft Tissue and Bone Sarcoma Group. Cancer Treat Rep 1985;69(2):211–3.
- 77. Pratt CB, Champion JE, Senzer N, et al. Treatment of unresectable or metastatic osteosarcoma with cisplatin or cisplatin-doxorubicin. *Cancer* 1985;56(8):1930–3.
- 78. Abe S, Nishimoto Y, Isu K, Ishii T, Goto T. Preoperative cisplatin for initial treatment of limb osteosarcoma: its local effect and impact on prognosis. *Cancer Chemother Pharmacol* 2002;50(4):320–4.
- Chard Jr RL, Krivit W, Bleyer WA, Hammond D. Phase II study of VP-16–213 in childhood malignant disease: a Children's Cancer Study Group Report. Cancer Treat Rep 1979;63(11–12): 1755–9
- Nissen NI, Pajak TF, Leone LA, et al. Clinical trial of VP 16– 213 (NSC 141540) I.V. twice weekly in advanced neoplastic disease: a study by the Cancer and Leukemia Group B. Cancer 1980;45(2):232–5.
- 81. O'Dwyer PJ, Leyland-Jones B, Alonso MT, Marsoni S, Wittes RE. Etoposide (VP-16–213). Current status of an active anticancer drug. N Engl J Med 1985;312(11):692–700.
- 82. Kung F, Hayes FA, Krischer J, et al. Clinical trial of etoposide (VP-16) in children with recurrent malignant solid tumors. A phase II study from the Pediatric Oncology Group. *Invest New Drugs* 1988;6(1):31–6.
- 83. Rosen G, Murphy ML, Huvos AG, Gutierrez M, Marcove RC. Chemotherapy, en bloc resection, and prosthetic bone replacement in the treatment of osteogenic sarcoma. *Cancer* 1976;37(1):1–11.
- 84. Rosen G, Marcove RC, Caparros B, et al. Primary osteogenic sarcoma. The rationale for preoperative chemotherapy and delayed surgery. *Cancer* 1979;43:2163–77.
- 85. Rosen G, Nirenberg A, Caparros B, et al. Osteogenic sarcoma: eight-percent, three-year, disease-free survival with combination chemotherapy (T-7). *Natl Cancer Inst Monogr* 1981;56:213–20.
- 86. Rosen G, Caparros B, Huvos AG, et al. Preoperative chemotherapy for osteogenic sarcoma: selection of postoperative adjuvant chemotherapy based on the response of the primary tumor to preoperative chemotherapy. Cancer 1982;49(6):1221–30.
- Rosen G, Marcove RC, Huvos AG, et al. Primary osteogenic sarcoma: eight-year experience with adjuvant chemotherapy. J Cancer Res Clin Oncol 1983;106(Suppl.):55–67.
- Meyers PA, Heller G, Healey J, et al. Chemotherapy for nonmetastatic osteogenic sarcoma: the Memorial Sloan-Kettering experience. J Clin Oncol 1992;10(1):5–15.
- 89. Meyers PA, Gorlick R, Heller G, et al. Intensification of preoperative chemotherapy for osteogenic sarcoma: results of the Memorial Sloan-Kettering (T12) protocol. *J Clin Oncol* 1998;**16**(7):2452–8.
- 90. Hudson M, Jaffe MR, Jaffe N, et al. Pediatric osteosarcoma: therapeutic strategies, results, and prognostic factors derived from a 10-year experience. *J Clin Oncol* 1990;8(12):1988–97.
- 91. Jaffe N, Carrasco H, Raymond K, Ayala A, Eftekhari F. Can cure in patients with osteosarcoma be achieved exclusively with chemotherapy and abrogation of surgery? *Cancer* 2002;95(10):2202–10.

- 92. Jaffe N, Smith D, Jaffe MR, et al. Intraarterial cisplatin in the management of stage IIB osteosarcoma in the pediatric and adolescent age group. Clin Orthop Relat Res 1991;270:15–21.
- Miser JS, Krailo M. Osteosarcoma in adolescents and young adults: new developments and controversies. The Children's Cancer Group (CCG) studies. Cancer Treat Res 1993;62:287–91.
- 94. Provisor AJ, Ettinger LJ, Nachman JB, et al. Treatment of nonmetastatic osteosarcoma of the extremity with preoperative and postoperative chemotherapy: a report from the Children's Cancer Group. *J Clin Oncol* 1997;15(1):76–84.
- 95. Goorin AM, Schwartzentruber DJ, Devidas M, et al. Presurgical chemotherapy compared with immediate surgery and adjuvant chemotherapy for nonmetastatic osteosarcoma: Pediatric Oncology Group Study POG-8651. *J Clin Oncol* 2003;21(8):1574–80.
- Zalupski MM, Rankin C, Ryan JR, et al. Adjuvant therapy of osteosarcoma–A Phase II trial: Southwest Oncology Group study 9139. Cancer 2004;100(4):818–25.
- 97. Meyers PA, Schwartz CL, Krailo M, et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. *J Clin Oncol* 2005;23(9):2004–11.
- 98. Meyers PA, Schwartz CL, Krailo MD, et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival–a report from the Children's Oncology Group. J Clin Oncol 2008;26(4):633–8.
- Hunsberger S, Freidlin B, Smith MA. Complexities in interpretation of osteosarcoma clinical trial results. J Clin Oncol 2008;26(18):3103

 –4.
- Petrilli AS, de CB, Filho VO, et al. Results of the Brazilian Osteosarcoma Treatment Group Studies III and IV: prognostic factors and impact on survival. J Clin Oncol 2006;24(7):1161–8.
- 101. Winkler K, Beron G, Kotz R, et al. Adjuvant chemotherapy in osteosarcoma - effects of cisplatinum, BCD, and fibroblast interferon in sequential combination with HD-MTX and adriamycin. Preliminary results of the COSS 80 study. J Cancer Res Clin Oncol 1983;106(Suppl.):1–7.
- 102. Winkler K, Beron G, Kotz R, et al. Neoadjuvant chemotherapy for osteogenic sarcoma: results of a Cooperative German/Austrian study. J Clin Oncol 1984;2(6):617–24.
- 103. Winkler K, Beron G, Delling G, et al. Neoadjuvant chemotherapy of osteosarcoma: results of a randomized cooperative trial (COSS-82) with salvage chemotherapy based on histological tumor response. J Clin Oncol 1988;6(2):329–37.
- 104. Winkler K, Bielack SS, Delling G, et al. Treatment of osteosarcoma: experience of the Cooperative Osteosarcoma Study Group (COSS). Cancer Treat Res 1993;62:269–77.
- 105. Fuchs N, Bielack SS, Epler D, et al. Long-term results of the co-operative German-Austrian-Swiss osteosarcoma study group's protocol COSS-86 of intensive multidrug chemotherapy and surgery for osteosarcoma of the limbs. Ann Oncol 1998;9(8):893–9.
- 106. Winkler K, Bielack S, Delling G, et al. Effect of intraarterial versus intravenous cisplatin in addition to systemic doxorubicin, high-dose methotrexate, and ifosfamide on histologic tumor response in osteosarcoma (study COSS-86). Cancer 1990;66(8):1703–10.
- 107. Bacci G, Picci P, Ruggieri P, et al. Primary chemotherapy and delayed surgery (neoadjuvant chemotherapy) for osteosarcoma of the extremities. The Istituto Rizzoli Experience in 127 patients treated preoperatively with intravenous methotrexate (high versus moderate doses) and intraarterial cisplatin. Cancer 1990;65(11):2539–53.
- 108. Ferrari S, Bacci G, Picci P, et al. Long-term follow-up and post-relapse survival in patients with non-metastatic

- osteosarcoma of the extremity treated with neoadjuvant chemotherapy. *Ann Oncol* 1997:**8**:765–71.
- Bacci G, Picci P, Pignatti G, et al. Neoadjuvant chemotherapy for nonmetastatic osteosarcoma of the extremities. Clin Orthop Relat Res 1991;270:87–98.
- 110. Bacci G, Picci P, Ferrari S, et al. Prognostic significance of serum alkaline phosphatase measurements in patients with osteosarcoma treated with adjuvant or neoadjuvant chemotherapy. Cancer 1993;71:1224–30.
- 111. Ferrari S, Mercuri M, Picci P, et al. Nonmetastatic osteosarcoma of the extremity: results of a neoadjuvant chemotherapy protocol (IOR/OS-3) with high-dose methotrexate, intraarterial or intravenous cisplatin, doxorubicin, and salvage chemotherapy based on histologic tumor response. Tumori 1999;85(6):458-64.
- 112. Bacci G, Briccoli A, Ferrari S, et al. Neoadjuvant chemotherapy for osteosarcoma of the extremity: long-term results of the Rizzoli's 4th protocol. *Eur J Cancer* 2001;37(16):2030–9.
- 113. Bacci G, Ferrari S, Longhi A, et al. High dose ifosfamide in combination with high dose methotrexate, adriamycin and cisplatin in the neoadjuvant treatment of extremity osteosarcoma: preliminary results of an Italian Sarcoma Group/Scandinavian Sarcoma Group pilot study. J Chemother 2002;14(2):198–206.
- 114. Ferrari S, Smeland S, Mercuri M, et al. Neoadjuvant chemotherapy with high-dose Ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: a joint study by the Italian and Scandinavian Sarcoma Groups. *J Clin Oncol* 2005;23(34):8845–52.
- 115. Bacci G, Ferrari S, Tienghi A, et al. A comparison of methods of loco-regional chemotherapy combined with systemic chemotherapy as neo-adjuvant treatment of osteosarcoma of the extremity. Eur J Surg Oncol 2001;27(1):98–104.
- 116. Saeter G, Alvegard TA, Elomaa I, et al. Treatment of osteosarcoma of the extremities with the T-10 protocol, with emphasis on the effects of preoperative chemotherapy with single-agent high-dose methotrexate: a Scandinavian Sarcoma Group study. *J Clin Oncol* 1991;9(10):1766–75.
- 117. Saeter G, Wiebe T, Wiklund T, et al. Chemotherapy in osteosarcoma. The Scandinavian Sarcoma Group experience. Acta Orthop Scand Suppl 1999;285:74–82.
- 118. Smeland S, Muller C, Alvegard TA, et al. Scandinavian Sarcoma Group Osteosarcoma Study SSG VIII: prognostic factors for outcome and the role of replacement salvage chemotherapy for poor histological responders. Eur J Cancer 2003;39(4):488–94.
- 119. Bramwell VH, Burgers M, Sneath R, et al. A comparison of two short intensive adjuvant chemotherapy regimens in operable osteosarcoma of limbs in children and young adults: the first study of the European Osteosarcoma Intergroup. J Clin Oncol 1992;10(10):1579–91.
- 120. Souhami RL, Craft AW, Eijken JWvd, et al. Randomised trial of two regimens of chemotherapy in operable osteosarcoma: a study of the European Osteosarcoma Intergroup. *Lancet* 1997;350:911–7.
- 121. Lewis IJ, Nooij MA, Whelan J, et al. Improvement in histologic response but not survival in osteosarcoma patients treated with intensified chemotherapy: a randomized phase III trial of the European Osteosarcoma Intergroup. J Natl Cancer Inst 2007;99(2):112–28.
- 122. Kalifa C, Razafindrakoto H, Vassal G, et al. Chemotherapy in osteogenic sarcoma: the experience of the Pediatric Department of the Gustave Roussy Institute. *Cancer Treat Res* 1993;**62**:347–9.
- 123. Philip T, Iliescu C, Demaille MC, et al. High-dose methotrexate and HELP [Holoxan (ifosfamide), eldesine

- (vindesine), platinum]-doxorubicin in non-metastatic osteosarcoma of the extremity: a French multicentre pilot study. Federation Nationale des Centres de Lutte contre le Cancer and Societe Francaise d'Oncologie Pediatrique. Ann Oncol 1999;10(9):1065–71.
- 124. Le Deley MC, Guinebretiere JM, Gentet JC, et al. SFOP OS94: a randomised trial comparing preoperative high-dose methotrexate plus doxorubicin to high-dose methotrexate plus etoposide and ifosfamide in osteosarcoma patients. Eur J Cancer 2007;43(4):752–61.
- 125. Tunn PU, Reichardt P. Chemotherapy for osteosarcoma without high-dose methotrexate: a 12-year follow-up on 53 patients. *Onkologie* 2007;**30**(5):228–32.
- 126. Bacci G, Picci P, Ferrari S, et al. Influence of adriamycin dose in the outcome of patients with osteosarcoma treated with multidrug neoadjuvant chemotherapy: results of two sequential studies. *J Chemother* 1993;5(4):237–46.
- 127. Kawai A, Sugihara S, Kunisada T, Hamada M, Inoue H. The importance of doxorubicin and methotrexate dose intensity in the chemotherapy of osteosarcoma. Arch Orthop Trauma Surg 1996;115(2):68–70.
- 128. Leung S, Marshall GM, al Mahr MA, et al. Prognostic significance of chemotherapy dosage characteristics in children with osteogenic sarcoma. *Med Pediatr Oncol* 1997;28(3):179–82.
- Lewis IJ, Weeden S, Machin D, Stark D, Craft AW. Received dose and dose intensity of chemotherapy and outcome in non-metastatic extremity osteosarcoma. J Clin Oncol 2000;18(24):4028–37.
- 130. Bacci G, Ferrari S, Bertoni F, et al. Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the istituto ortopedico rizzoli according to the istituto ortopedico rizzoli/osteosarcoma-2 protocol: an updated report. *J Clin Oncol* 2000;18(24):4016–27.
- 131. Jaffe N. Pediatric osteosarcoma: treatment of the primary tumor with intraarterial cis-diamminedichloroplatinum-II (CDP)–advantages, disadvantages, and controversial issues. *Cancer Treat Res* 1993;**62**:75–84.
- 132. Cullen JW, Jamroz BA, Stevens SL, et al. The value of serial arteriography in osteosarcoma: delivery of chemotherapy, determination of therapy duration, and prediction of necrosis. J Vasc Interv Radiol 2005;16(8):1107–19.

- 133. Hugate RR, Wilkins RM, Kelly CM, et al. Intraarterial chemotherapy for extremity osteosarcoma and MFH in adults. Clin Orthop Relat Res 2008;466(6):1292–301.
- 134. Bielack SS, Bieling P, Erttmann R, Winkler K. Intraarterial chemotherapy for osteosarcoma: does the result really justify the effort? *Cancer Treat Res* 1993;**62**:85–92.
- 135. Bielack S, Kempf-Bielack B, Schwenzer D, et al. Neoadjuvant therapy for localized osteosarcoma of extremities. Results from the Cooperative osteosarcoma study group COSS of 925 patients. Klin Padiatr 1999;211(4):260–70.
- 136. Eselgrim M, Grunert H, Kuhne T, et al. Dose intensity of chemotherapy for osteosarcoma and outcome in the Cooperative Osteosarcoma Study Group (COSS) trials. *Pediatr Blood Cancer* 2006;47(1):42–50.
- 137. Bacci G, Longhi A, Versari M, et al. Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy: 15-year experience in 789 patients treated at a single institution. Cancer 2006;106(5):1154–61.
- 138. Nardin A, Lefebvre ML, Labroquere K, Faure O, Abastado JP. Liposomal muramyl tripeptide phosphatidylethanolamine: Targeting and activating macrophages for adjuvant treatment of osteosarcoma. Curr Cancer Drug Targets 2006;6(2):123–33.
- 139. Buddingh EP, Kuijjer ML, Duim RA, et al. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage-activating agents. Clin Cancer Res 2011;17(8):2110–9.
- 140. Muller CR, Smeland S, Bauer HC, Saeter G, Strander H. Interferon-alpha as the only adjuvant treatment in high-grade osteosarcoma: long term results of the Karolinska Hospital series. Acta Oncol 2005;44(5):475–80.
- 141. Whelan J, Patterson D, Perisoglou M, et al. The role of interferons in the treatment of osteosarcoma. Pediatr Blood Cancer 2010;54(3):350–4.
- 142. Anderson P, Kopp L, Anderson N, et al. Novel bone cancer drugs: investigational agents and control paradigms for primary bone sarcomas (Ewing's sarcoma and osteosarcoma). Expert Opin Investig Drugs 2008;17(11):1703–15.